动态规划

填满背包的最大价格

给定两个长度都为N的数组weights和values,weights[i]和values[i]分别代表 i号物品的重量和价值
给定一个正数bag,表示一个载重bag的袋子,装的物品不能超过这个重量 返回能装下的最大价值

思路分析:
0-1背包问题主要涉及到两个问题的求解

a)求解背包所含物品的最大值:

利用动态规划求最优值的方法。假设用dp[N][V]来存储中间状态值,dp[i][j]表示前i件物品能装入容量为j的背包中的物品价值总和的最大值
(注意是最大值),则我们最终只需求知dp[i=N][j=V]的值,即为题目所求。
现在考虑动态规划数组
dp[i][j]的状态转移方程

假设我们已经求出前i-1件物品装入容量j的背包的价值总和最大值为dp[i-1][j],固定容量j的值不变,则对第i件物品的装法讨论如下:
首先第i件物品的重量weight[i]必须小于等于容量j才行,即
1、若weight[i]>j,则第i件物品肯定不能装入容量为j的背包,此时dp[i][j]=dp[i-1][j]
2、若weight[i]<=j,则首先明确的是这件物品是可以装入容量为j的背包的,那么如果我们将该物品装入,则有
dp[i][j]=dp[i-1][j-weight[i]]+value[i]
随之而来的问题是我们要判断第i件物品装到容量为j的背包后,背包内的总价值是否是最大?其实很好判断,即如果装了第i件物品后的总价值dp[i-1][
j-weight[i]]+value[i]>没装之前的总价值最大值dp[i-1][j],则肯是最大的;反之则说明第i件物品不必装入容量为j的背包(
装了之后总价值反而变小,那么肯定就不需要装嘛)
故,状态转移方程如下:
dp[i][j] = (dp[i-1][j] > (dp[i-1][j-weight[i]]+value[i]))? dp[i-1][j]:(dp[i-1][j-weight[i]]+value[i])
注意:这里的前i件物品是给定次序的

b)求出背包中装入物品的编号

这里我们采用逆推的思路来处理,如果对于dp[i][j]>dp[i-1][j],则说明第i个物品肯定被放入了背包,此时我们再考察dp[i-1][
j-weight[i]]的编号就可以了。

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41


/**
* 0-1背包问题
* @param V 背包容量
* @param N 物品种类
* @param weight 物品重量
* @param value 物品价值
* @return
*/
public static String ZeroOnePack(int V,int N,int[] weight,int[] value){

//初始化动态规划数组
int[][] dp = new int[N+1][V+1];
//为了便于理解,将dp[i][0]和dp[0][j]均置为0,从1开始计算
for(int i=1;i<N+1;i++){
for(int j=1;j<V+1;j++){
//如果第i件物品的重量大于背包容量j,则不装入背包
//由于weight和value数组下标都是从0开始,故注意第i个物品的重量为weight[i-1],价值为value[i-1]
if(weight[i-1] > j)
dp[i][j] = dp[i-1][j];
else
dp[i][j] = Math.max(dp[i-1][j],dp[i-1][j-weight[i-1]]+value[i-1]);
}
}
//则容量为V的背包能够装入物品的最大值为
int maxValue = dp[N][V];
//逆推找出装入背包的所有商品的编号
int j=V;
String numStr="";
for(int i=N;i>0;i--){
//若果dp[i][j]>dp[i-1][j],这说明第i件物品是放入背包的
if(dp[i][j]>dp[i-1][j]){
numStr = i+" "+numStr;
j=j-weight[i-1];
}
if(j==0)
break;
}
return numStr;
}

多重背包

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
/**
* 第三类背包:多重背包
*
* @param args
*/
public static int manyPack(int V,int N,int[] weight,int[] value,int[] num){
//初始化动态规划数组
int[][] dp = new int[N+1][V+1];
//为了便于理解,将dp[i][0]和dp[0][j]均置为0,从1开始计算
for(int i=1;i<N+1;i++){
for(int j=1;j<V+1;j++){
//如果第i件物品的重量大于背包容量j,则不装入背包
//由于weight和value数组下标都是从0开始,故注意第i个物品的重量为weight[i-1],价值为value[i-1]
if(weight[i-1] > j)
dp[i][j] = dp[i-1][j];
else{
//考虑物品的件数限制
int maxV = Math.min(num[i-1],j/weight[i-1]);
/*for(int k=0;k<maxV+1;k++){
dp[i][j]=Math.max(dp[i-1][j],dp[i-1][j-k*weight[i-1]]+k*value[i-1]);
}*/
for(int k=0;k<maxV+1;k++){
dp[i][j] = dp[i][j]>Math.max(dp[i-1][j],dp[i-1][j-k*weight[i-1]]+k*value[i-1]) ? dp[i][j]:Math.max(dp[i-1][j],dp[i-1][j-k*weight[i-1]]+k*value[i-1]);
}
}
}
}
/*//则容量为V的背包能够装入物品的最大值为
int maxValue = dp[N][V];
int j=V;
String numStr="";
for(int i=N;i>0;i--){
//若果dp[i][j]>dp[i-1][j],这说明第i件物品是放入背包的
while(dp[i][j]>dp[i-1][j]){
numStr = i+" "+numStr;
j=j-weight[i-1];
}
if(j==0)
break;
}*/
return dp[N][V];
}

三、完全背包

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
/**
* 第二类背包:完全背包
* 思路分析:
* 01背包问题是在前一个子问题(i-1种物品)的基础上来解决当前问题(i种物品),
* 向i-1种物品时的背包添加第i种物品;而完全背包问题是在解决当前问题(i种物品)
* 向i种物品时的背包添加第i种物品。
* 推公式计算时,f[i][y] = max{f[i-1][y], (f[i][y-weight[i]]+value[i])},
* 注意这里当考虑放入一个物品 i 时应当考虑还可能继续放入 i,
* 因此这里是f[i][y-weight[i]]+value[i], 而不是f[i-1][y-weight[i]]+value[i]。
* @param V
* @param N
* @param weight
* @param value
* @return
*/
public static String completePack(int V,int N,int[] weight,int[] value){
//初始化动态规划数组
int[][] dp = new int[N+1][V+1];
//为了便于理解,将dp[i][0]和dp[0][j]均置为0,从1开始计算
for(int i=1;i<N+1;i++){
for(int j=1;j<V+1;j++){
//如果第i件物品的重量大于背包容量j,则不装入背包
//由于weight和value数组下标都是从0开始,故注意第i个物品的重量为weight[i-1],价值为value[i-1]
if(weight[i-1] > j)
dp[i][j] = dp[i-1][j];
else
dp[i][j] = Math.max(dp[i-1][j],dp[i][j-weight[i-1]]+value[i-1]);
}
}
//则容量为V的背包能够装入物品的最大值为
int maxValue = dp[N][V];
int j=V;
String numStr="";
for(int i=N;i>0;i--){
//若果dp[i][j]>dp[i-1][j],这说明第i件物品是放入背包的
while(dp[i][j]>dp[i-1][j]){
numStr = i+" "+numStr;
j=j-weight[i-1];
}
if(j==0)
break;
}
return numStr;
}
/**
* 完全背包的第二种解法
* 思路:
* 只用一个一维数组记录状态,dp[i]表示容量为i的背包所能装入物品的最大价值
* 用顺序来实现
*/
public static int completePack2(int V,int N,int[] weight,int[] value){

//动态规划
int[] dp = new int[V+1];
for(int i=1;i<N+1;i++){
//顺序实现
for(int j=weight[i-1];j<V+1;j++){
dp[j] = Math.max(dp[j-weight[i-1]]+value[i-1],dp[j]);
}
}
return dp[V];
}

__END__